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Abstract—Dispersion in a turbulent boundary layer was measured in a wind tunnel, downstream of a
long heated wire located (successively) at the wall, at 1.66 displacement thickness from the wall, at the
position beyond which the intermittency drops below 1.0, and in the intermittent region. Mean temperature
profiles approached nearly the same asymptotic shape in all cases. A turbulent Prandtl number, defined by

T

was not far from the “Reynold analogy” value of 1 (0-6 to 0-8). Furthermore this turbulent Prandtl number
was approximately independent of downstream position and showed little variation with source distance
from the wall. Mean wall concentrations (temperatures) as a function of downstream distance were fitted
with simple power laws. The constant b in Batchelor's [1,2] theory for the mean particle displacement
perpendicular to the wall was calculated from the wall source data, although a basic hypothesis of the
theory (V = constant), was contradicted by the data. The b value agreed closely with the estimates of
Ellison [3] and Pasquill [4]. Restrictions of the theory were not satisfied for the other source positions.
Comparisons with Poreh and Cermak’s [5] measurements (at about the same Reynolds number) showed
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some areas of agreement.

NOMENCLATURE

displacement thickness and displacement

A, a constant of integration, see equation (3); thickness at the tagging wire position,
b, Batchelor’s constant, see equation (1); respectively;
c, an assumed constant, see equation (2); K, von Karman constant, 0-41;
dy, tagging wire diameter; v,, typical boundary layer “eddy viscosity”;
= U(y) temperature fluctuation;
Q, = j —=0(y)dy, mean heat flux; G(x, v), 8,(x), 8,(x), mean temperature, peak value,
o Us and wall value respectively.
u*,  square root of the wall shear stress divided
by the fluid density; Superscript
U, mean streamwise velocity; - averaged quantity.
U,, [reestream velocity;
o, velocity fluctuation component 1. INTRODUCTION
perpendicular to the wall; THE DISPERSION of a passive contaminant by turbu-
v g . lence not only is intrinsically interesting but is
’ dt’ fundamental to practical heat- and mass-transfer prob-
x,Ax, streamwise distance from the secondary lems. In flows other than the simplest ones very little
contraction exit and from the tagging wire, progress has been made towards sound theoretical
respectively; predictions. The greatest success has been with
X(1), mean downstream particle displacement; phenomenological models like those employing turbu-
v distance from the wall; lent (or eddy) diffusivities but the principle behind this
yr, tagging wire distance from the wall; concept is wrong (see for example, Batchelor [6]
Y, tagged particle distance from the wall; Corrsin [7,8]). An example? of turbulent diffusivity
AY, =TY-yr. models is given by Morkovin [9] who showed that,
when viewed as properties of quasi-similar fields, eddy
Greek symbols diffusivities can account for some observed character-
y, intermittency, i.. fraction of the time flow istics of a thermal boundary layer developing in a
is turbulent: turbulent boundary layer.
8,54,87, 99 per cent boundary-layer thickness, Few measurements of dispersion of a passive con-
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taminant in a boundary layer have been made under
the controlled conditions of the laboratory. One of the
earliest of these was by Skramstad and Schubauer [10]
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as reported in more detail by Dryden [11]. Mean
temperatures were measured behind a heated wire in
aboundary layer, but only for relatively short distances
(maximum downstream distance was approximately
36). Wieghardt [12] measured dispersion from a
“point” source (3 x 32mm) as well as a line source of
heat on the boundary layer wall for distances up to
approximately ten boundary-layer thicknesses (0 =
4-9-8:6cm). Other measurements of dispersion from
point sources include those by Kesic [13], Chandra
[14] and Chaudhry and Meroney [15].

Johnson [ 16, 17] measured mean temperature pro-
files and statistics of temperature fluctuations in a
turbulent boundary layer for a small stepwise discon-
tinuity in the wall temperature. The heated wall was
not long enough for the thermal boundary layer to
grow out to the free stream. He found that the instan-
taneous surface of demarkation between the heated and
unheated fluid was sharp and distinct. The local tur-
bulent Prandtl number was calculated at one down-
stream section and was found to vary between 0-8 and
1-2. Similarly, Nicholl [ 18] investigated the dynamical
effects of a strong discontinuity in the floor or roof
temperature of a wind tunnel, and Trinite and Valentin
[19] measured temperature and concentration profiles
downstream of a stepwise discontinuity in wall tem-
perature and concentration. Further discussion and
other references on dispersion in a turbulent boundary
layer is found in the book by Monin and Yaglom [20]
(Sections 9.4 and 10).

In this paper, measurements of mean temperature
profiles downstream of a long heated wire normal to
the flow and parallel to the wall, are reported. The
RMS values, skewnesses, micro- and integral scales,
and probability distributions of temperature fluctu-
ations were measured at two sections in the boundary
layer, along with probability distributions of pulse and
gap widths of the (intermittent) temperature signal.
These have been reported by Shlien [217] and will be
published in the future.

2. POREH AND CERMAK’S EXPERIMENTS
AND BATCHELOR’S THEORY
Poreh and Cermak [5] measured the dispersion of
ammonia gas from a steady line source normal to the
flow, on the wall of a turbulent boundary layer. Data
were reproducible within a deviation of about 10 per
cent. Four stages of dispersion development were
discussed:

(i) The initial stage has large velocity gradients
(near the wall) and large concentration gradients.

(i) Inthe intermediate stage “the diffusing plume ...
is submerged in the boundary layer”, that is,
dispersion is unaffected by (or the contaminant
has not dispersed to) the turbulent—irrotational
interface.

(ili) A stage of transition from the intermediate stage
to the final one. The turbulent-irrotational inter-
face behaves like a “lid” allowing dispersion
through it only by the relatively slow process
of molecular diffusion, which is, of course,

greatly enhanced by the turbulent “stretching”
of constant concentration surfaces, analogous to
the Corrsin—-Kistler [22] mechanism for viscous
propagation of vorticity via the “laminar super-
layer™.

(iv) In the final (asymptotic) stage, dispersion “is
limited by the growth of the developing bound-
ary layer” (Poreh and Hsu [23]). All the con-
taminant is contained by the wall and the
turbulent-irrotational interface.

Poreh and Cermak’s measurements extended from
within the intermediate stage to within the final one,
that is, from Ax = 3567 to 13408!, where 8] = J, at
Ax =0; 6 x66J,. Two source positions (78 and
2:3m downstream of the boundary-layer trip called
series 1 and II respectively) and three free stream
velocities were used resulting in Reynolds number
(based on 3]) ranges of 52006800 for “series I and
2500~3300 for “series IT”. For the intermediate stage
they found that the mean concentration, normalized
with its maximum C/Cy,, equals f(&) where & = y/yo.5
such that f(1) = 0-5 and that Cy oc Ax™ %% For the
final stage, C/Cy = F(n) and Cy x Ax™'° where
1= y/o.

Collapsing the intermediate stage data with C,, and
Vo.s normalizations is an insensitive determination of
quasi-similarity (Morkovin’s [9] term) since two points
on a monotonic decreasing curve having zero slope at
¢ = 0 are forced to coincide—the & = 0 point and the
C = 1/2C)y; point. Another problem with using yo.5 as
a characteristic length of the mean concentration pro-
files is the sensitivity of its value to data scatter. This
resulted in 22 per cent variations in the ratio of y,.5 to
the centroid of the concentration profile for the inter-
mediate stage. Other characterizations of the mean
concentration (or temperature) profiles will be pre-
sented here.

In 1959, Batchelor [1] first presented the idea of
applying similarity to dispersion in a turbulent bound-
ary layer. This idea was taken up, tested and extended
by Ellison [3], Gifford [24] and Cermak [25]. Then
in 1964, Batchelor [2] again presented the basic idea,
with some minor improvements. He assumed similarity
of a form such that the statistical properties of the
Lagrangian velocity depend only on u* and time (valid
for the constant stress region) resulting in

V=—=bu* (H

where b is an “absolute” constant. He also assumed

that a constant ¢ (of order unity) exists such that the

mean Lagrangian velocity in the streamwise direction

equals the Eulerian velocity located at ¢Y, that is,
dx u* Y

== U v:c“'_‘*'l —
3 = -y = L

)
where yq is the length characterizing the wall roughness
such that U(y)/u* = 1/x In(y/yo). Then by combining
equations (1) and (2) and integrating, Batchelor
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obtained

vl [? ln<i> Y A] (3)
br Yo

where A is the constant of integration which depends
on the particle release position from the wall, y;. (If
the particle is released from the wall, A = 0). Using a
crude approximation Batchelor estimated

A zyr[(b—l)ln<yl>+l—lnc]. @)

Yo

Equation (3) is valid only for the constant stress region
and for times, ¢ » yy/u*.

Batchelor also used a similarity scheme with length
scale equal to Y to predict the mean concentration at
ground level, Cy. By expressing the mean concen-
tration in terms of the integral of the probability of
finding a particle at a given position, he obtained the
result that Cy o (Axu*)™! as Ax — c0.

Some of the many estimates of the constant b are as
follows. Cermak [25] found good agreement of numeri-
cal calculations with various laboratory and field dis-
persion measurements by taking b = 0-1. Values of
b = 0-2 gave poor agreement. Batchelor [2], using a
different method, also estimated b to be less than 0-2.
However, based on the argument that equation (1)
must be consistent with an eddy diffusivity propor-
tional to height, Ellison [ 3] and Pasquill [4] suggested
b = 0-4. Poreh and Hsu [5] discussed the possibility
of b being a function of Y, which contradicts the
original similarity assumption.

3. FLOW FIELD
A vertical wall of a closed circuit wind tunnel (test
section 10m long and 1 x 1'2m in cross-section) was
used for the boundary-layer dispersion measurements.

z2lem 950¢m
20cm L 46cm 122 cm X915 .cm
“T Secondary ‘”—‘]
]‘- ﬂ comruchaL/ section .
- 1
=00 000
! T78cm
. Boundary p—"
~ layer trip ¥ Ax
{ __Location of
tagging wire

Fi1G. 1. Wind tunnel.

Figure 1 is a schematic sketch of the test section,
including the secondary contraction of ratio 1:27 to 1
(useful for making grid-generated turbulence more
nearly isotropic; Comte-Bellot and Corrsin [26]) re-
sulting in a test section free stream velocity of 127 m/s.
The boundary layer was tripped with commercial floor
sanding paper immediately following the primary con-
traction. By subtracting the linearized signals of two
hot wires in the flow, one wire traversing and the other
stationary as a reference, the variation in free stream
velocity was found to be less than 0-5 per cent at a
section 1-22m downstream of the secondary contrac-
tion exit.
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The boundary-layer mean velocity profiles, measured
at stations 1-78, 2:22, 2-84 and 3-46m downstream of
the secondary contraction exit fit the universal laws
within the expected scatter. The RMS fluctuations
compared well with Townsend’s [27] at a similar
Reynolds number. (Qur Reynolds number based on the
displacement thickness at the tagging wire was 6300.)
A check for two dimensionality of the mean velocity
and turbulent fluctuations at a station 3-46m from the
secondary contraction exit showed maximum vari-
ations of about 5 per cent over a transverse distance
of thirty displacement thickness. However, measure-
ments of intermittency at the 1-78 m station showed a
deviation from those of others. The position of inter-
mittency factor = 3 occurred at y = & while other in-
vestigators found it closer to y = 0-85. More details of
the boundary-layer flow are described by Shiien [21].

4. APPARATUS

A platinum wire (diameter, d; = 0-013, 0-076 or
0-13mm), stretched parallel to a vertical wall of the
wind tunnel at 178 m downstream of the secondary
contraction exit, was heated electrically with direct
current, thereby tagging fluid particles. Overheat ratios
of 0-3 to 0-5 were used and tension was maintained
in the wire by suspending a weight from it. Using the
“film” temperature (average of wire and ambient tem-
peratures) to identify an effective kinematic viscosity,
the maximum Reynolds number was computed to be
less than 40 in all cases, i.e. below the critical (vortex
shedding) Reynolds number.

The velocity wake behind a wire in the homogeneous
turbulent shear flow (dU/dy = 13/s™!) of Champagne
et al. [28] was measured (Fig. 2). This relatively long
persistence of the wake is caused by the increase of
production by the —uv(dU/dy) term in the turbulent
energy equation (Kellogg [29]). As a check of the effect
of the finite tagging-wire diameter on the dispersion,
some measurements were repeated with several wire
diameters. The effect was negligible (Figs. 10, 14, and
16).

Temperature was measured using 90 per cent plati-
num-10 per cent rhodium resistance thermometers
having a sensing element diameter 0-63 , and length
5 mm (resistance 3kQ) and 0-5mm, operated at about
0-2mA. The output was passed through a Honeywell
mode! A20B, D.C. amplifier, and the mean was ob-
tained either from a DISA 55D30 voltmeter or by
integrating the signal for 90s (set on a Cramer clock)
using a calibrated chemical integrator (Self-Organizing
Systems, Model SI100).

5. PROCEDURES

Velocity sensitivity of the resistance thermometer
was compensated by subtracting the apparent mean
temperature above ambient with the tagging wire
current off from the mean temperature measured with
the tagging wire current on. Typical drifts resulted in
apparent temperature change of 0-003°C.

Measurements at small Ax with the source (tagging
wire) on the wall (yr = 0) presented special problems
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because of heat transfer from the wire (as well as the
wake) to the wall (negligible in the other cases). It was
found (at Ax = 1067, y = 0-336]) that approximately
88 per cent of the long time asymptotic mean tem-
perature was reached after two minutes, 92 per cent
after three minutes and 98 per cent after 4min. Far
from the tagging wire, the transients were not observ-
able. Thus, for measurements near the tagging wire,
profile traverses were begun 2min after switching the
tagging wire on. Traverses were started from the wall,
outwards and then back again. A typical profile is
shown in Fig. 3. Since the entire traverse required about
six minutes (using a DISA DVM), the upper curve is
expected to be very close to the asymptotic one. Never-
theless, each of the sweeps was treated as a separate
traverse in the data reduction, resulting in slight extra
scatter.

6. MEAN TEMPERATURE PROFILES

Mean temperature profiles 8(y), normalized with the
peak mean temperature, 0, are plotted in Figs. 4-8.
Distances of the source from the wall y;, were chosen
to be 0 (ie. at the wall), 1-6651(y* = u*y/v = 425),
41487 (y = 1) and 79667 (y = %). Data points with the
same outline but different interiors indicate different
traverses of the resistance thermometer. For yr = 0 the
maximum Ax for which data were taken was 1405],
while for y > 0 the maximum Ax was 6405]. In com-
paring two curves with different y; but with the same
Ax, it should be recalled that the time of dispersion
(as well as the dispersing turbulent field) is quite
different in each case.

From the mean temperature profiles for yr >0,
stages similar to those of Poreh and Cermak are
apparent:

(i) Initial stage

The mean temperature profile is approximately
Gaussian, like that found in unsheared homogeneous
turbulence. The deviation from a Gaussian has been
predicted by Hinze [30] for short times and approxi-
mately verified by Hinze and van der Hegge Zijnen[31].
(i) Wall stage

The wall directly affects the temperature field
(0<0<0,)
(iti) Interface stage

This is essentially the same as Poreh and Cermak’s
transition stage where there is a direct effect of the
turbulent-irrotational interface. This interface “lid”
effect is most evident in Fig. 6 by the data collapse in
the intermittent region (y > 4-144,).
(iv) Final or asymptotic stage

This stage is best demonstrated by the collapse of
the last three 0(y) profiles (largest Ax) in Fig. 5. Pre-
sumably the asymptotic mean temperature profile is
independent of the source position.

The mean temperature profiles indicate that heat is
transferred to the wall. Unfortunately this heat transfer
could not be calculated to sufficient accuracy because
the resistance thermometers were uncalibrated, the

power dissipated by the tagging wire was not measured
accurately enough, and the wall outside temperature
varied by as much as 10°C. It is for these reasons that
temperatures in Figs. 10~12 were normalized with the
mean heat flux, Q, defined by

N /P
Q=JO . B(y)dy.

Scatter was reduced by this normalization.

Poreh and Cermak’s final stage mean temperature
profile has been plotted in Fig. 5 for comparison. The
difference at the tail is considerable. Comparison in the
intermediate stage is much better (Fig. 9). The data
collapsed well in the range 567 < Ax < 1405]. The
upper bound confirms Poreh and Cermak’s value. For
small separations, they used Weighardt’s [12] data;
but his smallest separation from the tagging wire was

o8- . ® Ax=53
S Axc108]
G Ax=208]

Dxs 403

Poreh and Cermak [5]
Br=100 8]

Lx= 1408
044

Yo

O dr=0013mm
d, = 0-07€ mm
0 d,=013mm

Open symbols represent 8,57 0~
Shaded symbols represent 8,8, @'

° /m Y gy
Q= d
5 Jo T 8wy

N
[e]

T T Y

T
o] 2C0 400 6C0o
%

F1G. 10. Wall and peak mean temperatures.
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is approximately equal to Y, the mean particle displace-
ment perpendicular to the wall, and the second
centroid-centered moment is approximately equal to
the dispersion, (Y — Y)?. In the calculated values pre-
sented here, no correction for molecular diffusion has
been attempted. Some properties of the mean tempera-
ture profiles are tabulated in Table | and plotted in
Figs. 10-18.

(a) Wall and peak mean temperatures

The wall and peak mean temperatures, f,, and 6,
respectively, normalized with the mean heat flux Q/5}
are plotted in Fig. 10. As Ax increases fl, and 8, ap-
proach each other but 8, remains less than 0, due to
heat transfer to the wall. (For y; =0, only 0, was

a0
>
144 Y
gﬂ: 16
Sy
_]Q
g\ 134
=
I
g s
PN
_IQ
124
oy, =458 -
0y =0 o y,=6808, /
. 0y 1668, & y-796 80;/
o 0 100 150 200 250

DxrB,x)

FiG. 12. Heat residing at a section.

approximately 1267 and thus no lower bound was
found. Hopefully our lower bound is not a result of
flow disturbances caused by the tagging wire or heat
transfer from the wire and wake to the wall.

7. PROPERTIES OF THE MEAN TEMPERATURE PROFILES

The mean temperature profiles can be characterized
by the wall concentrations and the distance from the
wall of the one-half wall concentration (both used in
[51). the peak temperature (different from the wall tem-
perature with the tagging wire away from the wall)
and the various centroid-centered moments,

0

J (y~7)"f7(y)dy;’j Oy dy.
i 0

These moments are important not only as character-
izations of the profiles, but also because 6(y) is approxi-
mately equal to the probability that a particle from the
source can be found at the point (Ax, y).t Therefore,
the first moment, for example, of the mean temperature
profile, n

23 g

B(y)dy

yO(y)dy //’!f

0 0

+For example, Corrsin [8] or Saffman [32].

plotted since it was almost equal to 6,.) Power laws
can be fitted to the 0, data within the scatter (Fig, 11).
With the tagging wire in the interior of the boundary
layer, (yr = 1-6681 and 4-158]), a —1/2 power fall-off
is observed, while at the wall and in the intermittent
region the power is approximately —1.

Poreh and Cermak [ 5] fitted a —0-9 power to their
data (yr = 0, intermediate stage) while Batchelor [2]
predicted a — I power. It is remarkable that although
Batchelor’s prediction is valid for asymptotically large

o y =0

¥
Q 100 200 Bk

Ax/8, x)

F1G. 13. Mean particles (centroid) position.
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values are 2, 4 and 50 per cent low, respectively. The
latter error is partially due to the large extrapolation.
The smaller deviations might be attributed to the finite
tagging wire diameter. One further interesting feature
is that the shapes of these curves are qualitatively the
same as the wall temperature curves in Fig. 10.

(c) Centroid position

The centroid position has been normalized with local
displacement thickness and plotted against Ax/d,(x} in
Fig. 13. The curves for the various source positions
appear to approach a constant, 2-54. These data are
replotted in Fig. 14 as AY/8] vs Ax/8], where
AY = Y—yy, for comparison with Batchelor’s theory.
For y; = 41561 and 7-965], the centroid initially
moves towards the wall. This may be the “lid” effect
of the turbulent-irrotational interface, so the theory is
inappropriate here. For these cases AY begins to in-
crease when 0, approaches 0, closest.

Batchelor’s constants, 4, b and ¢ were first evaluated
without regard to the restrictions of the theory. They
were obtained by first calculating b from the slope of
the approximately straight line portion of the curve,

T
o] 50 100

Dx/ By0x)

F16. 15. Dispersion.

distances (yet within the constant stress region), the
power law fits the entire range of data. Others have
also measured —09 and —1-0 powers (see Pasquill
[33], p. 154, and Sutton [34], p. 277).

(b) Heat “residing” at a section
One of the simplest characterizations of the mean
temperature profile is its areas,

J 6(y)dy,

[}

which is proportional to the total heat “residing” at the
section. This has been normalized with the heat flux g,
for reasons mentioned, and plotted in Fig. 12. An
asymptote (final stage) is approached independent of
the source distance from the wall. As Ax becomes small,
this normalized total heat should approach U ,/U(yr),
but for yr/6] = 1-66, 415 and 7-96, the extrapolated

and then fitting A and ¢ by least squares.t For the
tagging wire on the wall, b = 0-39 +0-05, ¢ was found
to lic between 0-7 and 3-6, and A between —0-04 and
—008 (apparent source position). For y; = 1-665],
b=017+001, ¢ was between 0-77 and 22, and 4
between —3-0 and — 3-5 [equation (4) gives 4 = - 3-3].
The straight line portion of the yr = 4-15] data re-
sulted in b ~ 0-1.

For yr = 0 the b value, 0-39 agrees closely with that
estimated by Ellison [3] and Pasquill [4] of 0-4, but
is larger than the maximum of 0-2 estimated by Cermak
[25] and Batchelor [2]. Batchelor also estimated ¢ to
be of order 1-0.

tThe least square program used is “BMDX 85" of the
Health Sciences Computing Facility, UCLA (revised 6
August, 1968).
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F1G. 16. Dispersion.

The theory is expected to be valid in the constant
stress region and for 1 > yr/u*. If the upper limit of
the constant stress region is taken as y* < 1000, the
first restriction results in y < 4-081, 3-137 and 2787
for Ax = 0, 1406] and 2206 respectively. The vy =0
curve lies within these bounds, but for yy = 1-663,
the second restriction gives tU(ys) » 3381, This to-
gether with the constant stress limitation indicates that
the theory is inapplicable in this case and thus there
need not be any concern that the value of b here is
different from that with vy = 0. One other restriction
implied by the constant stress assumption is that the
dispersion be unaffected directly by the turbulent--
irrotational interface. Thus data resulting from mean
temperature profiles with tails extending well within
the interface region should also be rejected, further
limiting the range of validity to Ax < 408 for y+ =0
and Ax < 3065 for 1-666].

One of the most striking aspects of the y; = 0 and
1-66  curves in Fig. 14 is their linearity in the constant
stress region. This however, contradicts Batchelor’s
hypothesis that VV = bu* x constant [equation (1) since
V x~ U(Y)(@Y/cx) x U(Y)]. The linearity of the curves
also limits the usefulness of the theory since three con-
stants are fitted to essentially a straight line.

In Fig. 18, the Y data for yy = 0, extrapolated with

° »-=0
O y, <1668
oy =416 B;
3y 6808,
& 4 -796%
3 5
c
E3
2 o
w
N 150 200 550
o Dx/8,4x)
~05 \\\ o
Fi1G. 17. Skewness of mean temperature profiles.
40 - . the y; = 1-666] data are compared with that of Poreh
.« " and Cermak, computed from the mean concentration
TFF | Lo . profiles of Poreh [35]. The agreement is fair.
8" . b
- Open symbols represent series [
9 anfp,,é‘”/ Shaded symbols represent series I (d) Dispersion
° ot ¥ T The standard deviation of the mean temperature pro-
' . file (square root of the particle dispersion), normalized
‘ . " witha local boundary-layer thickness, [(Y— Y)?]*/34(x),
- . i * approaches an asymptote of approximately 1-65, as
4 L - —————Qur do* xtra| : . v %2 .
w ° o Gara caioniaten nom foreb 38" shown in Fig. 15. When (Y— Y)2A67)? is plotted as a
el o g o function of Ax/8] (Fig. 16) linear regions can be ob-
6 J-i6lor9)ft s served.t The small variation in the slopes as well as
o e o o oo - homogeneous turbulence analysis suggest defining a
hN%:% e

FI1G. 18. Comparison with Poreh and Cermak [5].

1This contradicts the result 6’— Y)? o« At obtained by
Chatwin [36] and others.
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Table 1

yr Ax dr a, 0., Lo AY (Y—T)

o o (mm) 0/67 B0 J oy o o Skewness
0-00 4-98 0-013 7-63 7-57 1-953 0-190 00298 1-69
0-00 498 0-013 7-63 9-15 1-974 (188 0-0297 1-70*
0-00 995 0-013 370 3-36 1-739 0-304 00526 0-949
0-00 995 0013 370 3.98 1747 0302 00527 0952
0-00 149 0-013 287 275 1-671 0391 00942 121
0-00 149 0-013 287 297 1-676 0:390 00942 [-21*
0-00 199 0-013 2:01 168 1-579 0535 0168 0964
000 199 013 1718 1-72 1-558 0-567 185 0-905
0-00 199 013 1-99 196 1-577 0540 {180 0984
000 249 0-013 1-53 1-58 1-544 0637 0225 0-854
0-00 249 0013 1-96 1-79 1-567 0-587 0-192 0-839
000 39-8 013 0-944 0843 1-439 0-994 0-561 0904
0-00 39-8 013 0997 0962 1-450 0-963 0-543 0948
000 59-7 013 0725 0-352 1-392 1-:22 0-759 0-854
000 59-7 013 0794 0-688 1-422 1-16 0748 0933
0-00 597 013 0709 0:376 1-389 1-27 0885 1-01
0-00 59-7 013 0-785 0642 1-414 1-21 (0-868 1-07
0-00 99-5 13 0441 0-304 1318 192 187 0785
0-00 99-5 13 0454 0425 1334 185 182 0813
000 139:0 013 0-368 0303 1-308 220 2-53 0-876
0-00 1390 13 0373 0373 1:317 214 248 0917
1-66 995 G013 1-19 0-0000 1-254 0-000 173 0000
166 995 0-013 121 0-0000 1-256 - 0015 0177 192
1-66 199 0-013 0761 0-0590 1-267 0-047 051t 0380
1-66 199 013 0616 0-0897 1-272 0-046 0-609 0-249
1-66 299 0-013 0530 0-192 1-295 0-008 0-830 (360
1-66 299 0013 0539 0158 1-284 0061 0815 0333
1-66 299 0-076 0514 0153 1-278 0126 0877 0325
1-66 59-7 0-13 0-358 0331 1:291 0-343 1-71 0-561
1-66 79-6 0-076 0-366 0292 1298 0-450 2-02 0-685
1-66 1190 0-076 0-305 0-230 1-278 0-818 279 0-645
1-66 1330 0076 0302 0-261 1-283 0-866 305 0729
166 2190 013 0222 0198 1-253 1-64 4-94 0583
166 332:0 013 0168 0153 1-233 2:54 7-85 0-554
1-66 4710 013 0142 00923 1-222 336 107 0-536
1-66 6370 13 0124 0-0682 1-225 4-06 136 515
415 597 013 0-330 0-0003 -114 -0114 164 — 0081
415 1590 013 0198 00951 1-190 - {380 440 0270
4-15 308:0 013 0155 0105 1211 0-213 7-34 0411
415 4710 013 133 -0790 1219 0936 10-6 0470
4-15 6370 013 117 00728 1-219 1477 14-1 0-448
6-80 6370 013 0101 0:0595 1-187 - (028 155 0-265
7-96 3080 013 0-209 0-0078 1-081 - 0663 523 — 0455
796 471-0 013 0139 00308 1-135 - 0950 9-88 —0-138
796 6370 013 0102 0-0500 1-170 —~0-775 147 0096

*Same data as previous case but different extrapolation to the wall.

turbulent diffusivity by U, (8/6x)HY— YY.§ A turbu-
lent Prandtl number (ratio of momentum to thermal
turbulent diffusivities) can thus be defined using a
typical turbulent viscosity for the boundary layer of
0-6u*d (see, for example, Hinze [37] Figs. 7-17). The
resulting Prandtl numbers 0-80, 0:73, 0-82, 0:56 for
yr/d3 = 0, 1-66, 415 and 796 respectively are not far
from the “Reynolds analogy” (see, for example, Monin
and Yaglom [20], p. 341) value of 1. Unity is approxi-
mately the generally “accepted” turbulent Prandtl num-
ber (based on the usual definition of turbulent diffu-
sivity). (See, for example, [20], pp. 332 and 337)

The data are also compared with those of Poreh and

+This diffusivity is different from the usual one defined
by —3Ju/(08/0y).

Cermak in Fig. 18. The slope of their (Y— Y)* data is
approximately the same as ours but their values, like
those for Y, are larger. The data for their series 11
experiments {source located 7-8m from the boundary
layer trip) differ, beyond the scatter, from their series I
experiments (source 2:8 m from the trip), showing some
effect of source location.

The skewness, (Y — Y)*/[(Y— Y)?]*?,in Fig. 17, dem-
onstrates the approach to an asymptote.

CONCLUSIONS

1. The normalized mean temperature profiles ap-
proached an asymptotic form, independent of the
source (tagging wire) distance from the wall.

2. Power laws fitted to the mean wall concentrations
{temperatures) as functions of downstream distance,
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resulted in an approximately — 1 power for the source
on the wall or in the intermittent region, and a —1,2
power for the source completely within the turbulent
region. The wall source result is essentially the same
as Poreh and Cermak’s [5].

3. The centroid position, Y, as a function of Ax
agreed approximately with that calculated from Poreh’s
[35] data. The measured value of the constant b in
Batchelor’s [1], [2] analysis agreed closely with the
estimates of Ellison [3] and Pasquill [4] for y; = 0.
The restrictions of the theory were not satisfied for the
other source positions. The hypothesis that d Y/d¢ oc u*
was contradicted by the data.

4. Probably the most useful and interesting result of
these measurements was the variation of the centroid-
centered second moment, (Y~ Y)?, with Ax and y;. By
defining a turbulent diffusivity as U (/0x)i(Y~ Y)%,
and using an average (across the boundary layer)
turbulent viscosity, a Prandtl number was defined. This
turbulent Prandtl number was not far from the
“Reynolds analogy” value of 1 (0-6 to 0-8) and showed
little variation with y, )

5. Because Y and (Y— Y)* change with respect to
Ax at different rates, it seems unlikely that the data
could be collapsed onto a single curve using a simple
rescaling scheme.
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MESURES DE DIFFUSION DANS LA COUCHE LIMITE TURBULENTE

Résume—On a mesuré la diffusion dans la couche limite turbulente en soufflerie, en aval d’un long fil
chauffé, placé successivement a la paroi, a une distance de la paroi égale a 1,66 fois 'épaisseur de déplace-
ment, 4 une position au-dela de laquelle l'intermittence tombe au dessous de 1,0 et enfin dans la region
intermittente. Dans tous les cas les profils de température approchaient a peu prés la méme forme
asymptotique. Le nombre de Prandtl turbulent défini par

{2@_24(?_77}”

v, 0x

n'est pas éloigné (0,6 & 0.8) de la valeur 1 donnée par I'analogie de Reynolds. De plus, ce nombre de
Prandtl turbulent est approximativement indépendant de la position en aval et varie peu avec la distance
de 1a source a la paroi. Les concentrations (ou températures) moyennes pariétales ont été approchées par
de simples lois puissance en fonction de la distance aval. La constante b relative au déplacement moyen
de la particule perpendiculairement 4 la paroi, dans la théorie de Batchelor [1, 2], a été calculée & partir
des données sur la source placée en paroi, quoiqu’une hypothése fondamentale de la théorie (V = constante)
soit en contradiction avec les données. La valeur de b est en bon accord avec I'estimation de Ellison [3]
et Pasquill [4]. Les restrictions de la théorie n’étaient pas satisfaites pour les autres positions de la source.
La comparaison avec les mesures de Poreh et Cermak [5] (approximativement au méme nombre de
Reynolds) a montré I'existence de certains domaines d’accord.

DISPERSIONSMESSUNGEN IN EINER TURBULENTEN GRENZSCHICHT

Zusammenfassung— Die Dispersion in einer turbulenten Grenzschicht wurde in einem Windkanal
gemessen stromabwirts eines langen beheizten Drahtes.an der Wand in einer Entfernung von der Wand
vom 1,66-fachen der Verdringungsdicke, sowoh! im Schwankungsbereich als auch jenseits des Bereiches
in dem die Schwankungen unter den Wert 1,0 abfallen. Die mittleren Temperaturprofile nahmen in allen
Fillen etwa die gleiche asymtotische Form an. Eine turbulente Prandtl-Zahl, definiert nach

[ﬁié(y-?)zr

v, 0x

lag nicht weit vom “Reynolds-Analogie”-Wert von 1(0,6-0,8) entfernt. Diese turbulente Prandtl-Zahl war
angenihert unabhingig von der Lage stromabwiirts und ergab wenig Anderung bei gedindertem
Quellabstand von der Wand. Die mittleren Wandkonzentrationen (Temperaturen als Funktion des
Abstandes stromabwirts) wurden mit einfachen Exponentialgesetzen angespasst. Die Konstante b in
Batchelor’s Theorie [1, 2] fiir die mittlere Teilchenverdringung senkrecht zur Wand, wurde berechnet
aus den Daten der Quelle an der Wand, obwohl die grundsitzliche Annahme der Theorie (V = konstant)
von den Ergebnissen widerlegt wurde. Der Wert b stimmte sehr gut iiberein mit den Schéitzungen von
Ellison [ 3] und Pasquill [4]. Einschrinkungen der Theorie wurden durch andere Quellanordnungen nicht
befriedigt. Der Vergleich mit Messungen von Poreh und Cermak [5] (bei etwa gleichen Reynolds-Zahlen)
ergab einige Bereiche der Ubereinstimmung.

U3MEPEHME JUCITEPCUHM B TYPBYJIEHTHOM IIOI'PAHUYHOM CJIOE

Annoraunn — M3MepeHust auchepcHi B TypOyJICHTHOM NOTPAHMYHOM CJIOE [IPOBOAMIIMCE B a3po-
IHHaMHYecKo# Tpy6e 3a IIMHHOM HATPeTON MPOBONOKOH, KOTOPYIO pacloNaraliy ocie10BaTENBHO
Ha CTEHKE, Ha pacCTOAHMM 1,66 TOMILHHB! BHITECHEHHS OT CTEHKH, B MECTE, 3a NPEae/iaMH KOTOPOro
BEJTHYMHA MIepeMeXaeMOCTH manana Hike 1,0, a Taxoke B obactu nepemexaemoctu. Bo Beex cnywasx
cpeaHve npodKuIv CKOPOCTH MPUOIKKAIUCE K TIOYTH ONHOMY M TOMY X€ aCHMIITOTHYECKOMY BHAY.
3uavexue TypOynenTHOro yucaa Ilpasatns, onpenenseMoro BolpaXkeHHeM

Up 81 —— 7"

[Vr 5'2'(}'—}’) ] )
HE OTJIMYANOCh HAMHOIO OT 3HA4EHMs, KOTOPOE ClIeNyeT U3 «aHaNOrMM PelHonbRCca», paBHOro 1
(ot 0,6 no 0,8). Kpome Toro, anauenue TypOyneHTHOro uucna IlpaHAT/Is MOYTH HE 3aBHCENO OT
TI0JIOXKEHHS1 IIPOBOJIOKU BAOJDb MO NOTOKY M HE3HAYUTEITBHO M3MEHSJIOCh C PACCTOSIHHEM OT CTEHKH.
3aBHCUMOCTB CPENHHX 3HAYE€HUI KOHLEHTPAUMM Ha CTEHKe (TEMIIEPATYP) OT PACCTOAHMUS BHH3 TIO
MOTOKY OMHCHIBAETCSA TNPOCTHIMH CTENEHHBLIMU 3aKOHOMepHOcTsMH. KoHcTaHTa «b» B TeOopuH
Batyenopa [1,2] ans cpenHero BLITECHEHHMS YACTHLBI MEPNEHAMKYISIPHO K CTEHKE PACCYMTBIBANACH
1O AAHHBIM, IONYYEHHBIM IJ1S1 HCTOYHHKA Ha CTEHKE, XOTs PE3YJIbTATHI HE MIOATBEPAWIH OCHOBHYIO
runoTely Teopuu Biruenopa (V& constant). 3HaueHHE KOHCTAHTHI «b» XOPOIUO COrNacyeTcs ¢
oueHkamn nucoHa [3] u [Mackunis [4]. OrpaHuyeHus TEOPHHU He TIONYYHITH NOATBEPXKIEHHA B ClIyvyae
OPYrAX MECTOMONOXEHUA UCTOYHKKA. TToNnydyeHO HEKOTOPOE corjlache ¢ pPe3yibTaTaMH H3MepeHUMH

IMopeka u Yepmaka [5] npruMepHO NIpH TOM Xe 3HaueHuH Yucia Peitnonnaca.



